APP优化模板:决策树算法是如何计算的?

APP优化模板:决策树算法是如何计算的?

APP优化模板:决策树算法是如何计算的?
APP优化模板:决策树算法是如何计算的?

假定我们需要了解的是用户如何能够付费,那付费与否就是要考察的因变量,也是需要决策树根据变量情况预测的值

我们把整个数据集按照20%,80%分成训练集和验证集,即为一部分拿来训练模型,让APP优化模板从数据里找出特征因素,一部分用来印证和预测,判断模型和挑选的特征变量是不是有效的,拟合度如何
从自变量里抽取2个既定值,与因变量进行卡方检验;如卡方检验显示2者关系不显著,正面2个既定值可以合并。不断减少自变量的取值数量,知道该自变量所有取值均呈现显著性。

例如,我们的数据里有130个自变量,其中很多我们都不知道是否和用户是否付费相关,不知道用户每周活跃次数和用户付费是否相关,不知道用户尝试了某个功能是否和用户付费相关,这时就通过决策树的卡方检验通过距离来判断自变量和因变量之间是否相关

通过比较找出最显著的自变量,并按照自变量的最终取值对样本进行分割,也就是形成多个不同的树(一般CHAID生成两个树节点)

最终展示出所有和用户付费与否相关的决策点,其中可能是,直播功能创建超过3个,付费的概率高达80%,决策树就帮助我们剔除了不相关或关联性不显著的自变量,告诉了我们,到底什么才会导致用户的转化付费。
 
以上就是小编介绍的一篇文章:APP优化模板:决策树算法是如何计算的?如果有任何问题与需求可联系我们!
>APP优化模板:决策树算法是如何计算的?

相关文章